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ADAPTIVE STATISTICAL PROCEDURES IN 

RELIABILITY AND MAINTENANCE PROBLEMS 

by 

J.L. Gastwirth and J.H. Venter 
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1. .  Introduction. 

Consider the following problem: A "system" (or "item", "instrument", 

etc.) with a "lifetime" that has the distribution function F(t) is to be 

inspected at times t-^tg,... .  If inspection reveals that the system is 

inoperative, it is repaired (or replaced); otherwise nothing is done. 

The general problem is to choose the inspection plan, i.e., the sequence 

t1,t2,... , in an optimal way in a suitable sense. Results in this con- 

nection can be found in articles [k],   [2]  where further references can be 

found.  In these studies it is assumed that the distribution function 

F(t) is known. Although this is usually not the case in practice, the 

resulting statistical questions have not yet received much attention 

(see [k],  p. 112,113). 

In the present paper the case is considered in which the system 

has.an exponential lifetime, i.e., 

if t < 0 

if t > 0 , 

with X(> 0) an unknown parameter, and several adaptive or sequential 

inspections plans are proposed. These plans use information, as it 

becomes available through. inspection, to estimate the unknown parameter 

(1.1) F(t) 4° 
^1-e 

u 
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X and in this manner approach the plan that would he optimum if X 

were known. This idea is, of course, not newj it has already been 

used hy Chernoff and others [5], [l] in their papers on sequential de- 

sign of experiments to which this paper is related. 

The plans proposed here are of two general types, viz., 

(i) plans "based on maximum likelihood methods, 

(ii) plans based on refinements of the Robbins-Monro stochastic approxi- 

mation method [8]. 

The asymptotic properties of these two types of plans are generally the 

same, but from a practical point of view the latter seem preferable in 

that they are computationally simpler and involve storage of a minimum 

of past information. 

2. Notation and general assumptions. 

Unless otherwise stated, we shall assume that there exist known 

constants X and X; with 0 < X < X < 00 such that 

(2.1) X 6 (X, X) . 

Many of the results below can be formulated and proved if X is re- 

stricted only by 0 < X < », but (2.1) simplifies things considerably 

and is not unrealistic from a practical point of view in that X may 

be arbitrarily small and X arbitrarily large. 

We shall also assume that inspections and repairs are instantaneous. 

Let {üyd P) be a probability measure space. All random variables 

to be introduced below will be assumed to be defined on (fi, &>P). A 

generic element of Q   will be denoted by ta   and we shall, follow the - 

usual practice of exhibiting or omitting the argument "ID on random 

variables according to convenience. 

2 
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Now consider an inspection plan defined by specifying the inter- 

inspection times 

(2.2) T- - t. , T - **.-t- _ >   i~*-> 5, 

as follows. Let {U) be an arbitrary sequence of random variables 

the joint distribution of any finite number of which does not depend 

on the unknown X. Take T.. = max(0,U,} and define (T ) iteratively 

by 

(2.3) Tn+1 = max{0, f^, ...,in) + Uj 

for n=l,2,... . Here, each Yj, i-1,2,... is a random variable with 

conditional distribution given (Y,,.. .,Y. .,T.,,.. .,T.)  specified by 

(2.10 
"■{'. 

-XT 
with probability e  i 

-XT 
with probability 1-e  i , 

,th 
i.e., Y .= 0 if the i  inspection reveals that the system is inopera- 

tive and Y. = 1 otherwise. Also, f  is a real-valued measurable 

function of (Y.,...,Y ), functionally independent of X. Intuitively, 

after n inspections, the next inspection time T . depends on the 

past observations (Y,,...,Y ) through f  while U  allows for 
in n        n 

additional randomization. 

The class of all these inspection plans will be denoted by ■**  and 

a generic element of t/ by I. 

3>  Maximization of information. 

We define the average information obtainable from a plan I after 

n inspections by 

l! 
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(3.1) Jn(.I,X) = n
_1E[|jC log Ln(X)]

2 

where Ln(X) is the likelihood function of X based on (Y.,, ...,Y , 

Tl' "*,Tn^* Also let> 

(3-2) J(l,X) = lim inf J (l,X) , 
n-»« 

and we call j(l,X) the limiting average information obtainable from 

plan I. 

In this section we consider the problem of maximizing J (l,X) 

and j(l,X) by a judicious choice of I. The relevance of this 

problem to efficient estimation of X is well known ([5], [6]) and 

need not be discussed here. 

Theorem 3.1: For each n, for all X and for all I 

(3-3) J (I,X) < X"V(2-XT.) 

where T.  is the solution of the equation 

(3A) . e"XT = 1 - § XT . 

-1 
Remark: T. = -X~ log p and T,  is the 100(l-p)-th percentile of the 

exponential distribution where 

(3-5) p =  -203 

Proof. The conditional probability of observing Y.,, ...,Y  given 

(U^...,^) is 

(5.6) -XT,vY, XT* 1-Y. 
TT (e-^D^d-e -) 
i=l 

1^-H 

The distribution of (U.,, .. ..,U ) being independent of X, we find 



t 
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■I •" 

.1  i 

XTi% 
§- log L(X) = - I II + I (1-Y )T±e  V(l-e   J 
dX    n      i=1 i i  1=1 

n      .\T     -XT, 

= -^Ti(Ve    )/(1-e    > 

Writing, temporarily, 

h - ^(Y.-'^Vd-e-111), 

we have, for j > i, 

-XT« -1 -XT« 
E(XiXJ) = EtX.TjCl-e" 

J) E[(Yj-e  °) |YX, .. '^yl>\> •••>TJ1) 

= 0 

because of (2.U)-.' Hence, 

E[^logLn(X)r 

n   p 
lExf 

= £ E[T^(l-e"XTi)"2E[(Yi-e"
XTi)2|Y1,.. .,\_tf.\, • • ./^D 

= E T T?(l-e  1) e  1 

1 i 

< n Tx (1-e   ) e    ,    . 

since the function T (l-e" ) e    is maximized by T= Tx- Thus, 

(3.3) follows. 

. Equality in (3.3) is attained if and only if T± = Tx a.s. for 

each "i, i.e., if X were known, the optimal inspection plan in the 

sense of maximizing J (l,X.) for each n and X would call for periodic 

inspections with inter-inspection times T^. However, within the classts 

(i.e., when X is unknown) there exists no optimal plan. 

,5 
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In order to choose among the plans in c^ we have to use a different 

criterion. Thus, we might require that  inf  J (l,X) be maximized 
Xe(X,X) n 

for each n, i.e., seek the maximin plan. From (3-5) it follows that 

such a plan exists in «-/* and consists of taking T. = Tr for each i. 

This type of criterion does not take into account the information about 

X that becomes available as inspection proceeds. Plans with this pro- 

perty can be studied by using the criterion j(l,X). 

Definition; An inspection plan I is said to be adaptive (relative 

to J(I,X)) if 

(3-7) . J(I,X) = X_1TX(2-XTX) . 

We shall now define and discuss a few adaptive plans, 

(l) A Maximum Likelihood Plan. 

The following plan is denoted by ML. Let T^ be an arbitrary 

number such that 

■^ '< Tl < \ • 

Having defined    Tn,...,T      and observed    Yn,...,Y     we compute the In in 

maximum likelihood estimate    X     of   X,  i.e.,  if   Y.=l   for    i-1,...,n 

let   n =X   and otherwise let   n     be the unique solution of the equation 
n — n 

n -XT, -*-T« 
(3.8) lT,(Y.-e     ij/d-e     *)■- 0 

1 

in    X;  then 

(3.9) , \ = max{X, min(X,un)}  . 

Then we take . • - -■■-.■■    , -    -■■-. .-    - 

ic:    -i=svKf 
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(5.10) n+1 

n=l>2,... . 

Theorem 3.2: The ML plan is adaptive. 

Proof. We show firstly that, 

X -» X a.s. as n -»» 
n (3.11) 

and for this it suffices to show that 

(3.12) 

Now 

u -» X a.s. as n ->» 
n 

P{Y±=1, 1 < i < n) 

= P(Y±=1, 1 < i < n-DPfY^llY^l, 1 < i < n-1) 

-XT, 
< P{Y.=1, 1 < i < n-l)e " ^ 

Iterating hackwards we have 

P{Y =1, 1 < i < n) < e   h. 

Since P{Y =1, 1 < i < °°) < P{Y =1, 1 < i < n) for each n, we have 

(3.13) P(Y.=1, 1 < i <«} = 0 

Next let u > X and & > 0 such that (u-X)Tr > S and let 

(3.1M e = uUu-X)^ - 5]  . 

Consider some   a>efJ    and suppose that 

(3.15) u < lim sup |j. (cu) < u + e  . 
n n 

.i 

T" S—W EEEUäE rsiE zroD 
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Then there exists a sequence [a ) and an integer k. such that for 

all k > k^ 

U < U  (Oi) < U + € 

■X 

and, by (3«13) we may also suppose that for some i < n.  Y (a>) ^ 1. 

Hence, from (3-8), for k > k_, 

"k      -u T.     -u T. 
0 =lT,(Y,-e \  ^/(l-e nk *) 

1 

(3.16) >XT.Y/(l-e-(^+e)Ti) - £?. e  1(l-e.  *) 
~ 1 1 x 1 x 

"k   -XT.     / , v™   "k   -uT,   -uT, 
= I T e  1/(1-*(M*B)T1) - I V  ^l-e  *) + I 

1 i 1 * °k 

where 

-XT 

1 

Writing,  temporarily, 

^[f^V.-^)' 

Xi=Ti(Yi-e-XTi)/(l-e-^+£>Ti)  , 

we have 

E[X  |xn,...,X    ,] n'  1'       '  n-lJ 

= E{E[Xn|Y^,...,Yn_^,T1,...,TnJ IX^, ...,Xn_^} 

= EfT^l-e-k-^ir^-Ef^-e-^n) ^ .. ..Y^^Tj,.. .,TQ] fx^, .. .-,jy 

= 0   a.s. 

"because of (2.1»-).    Also,        ....  
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Var(Xn) = E{T^l-e"
(u+e:)Tn)-2E[(Yn-e-

XTn)2|Y:L,...,Yn_:L,T1,...,Tn]} 

E{T2(l-e-(^+e)Tn)-2e-XTn(l-e-XTn)} 

<2X-2(l-e-^+e)\)-2 

< 00  . 

Hence, by Theorem E, p. 387 of [7], 

n~ I -»0 a. s. as n-» < 
n 

In particular, we may suppose that for our cu, 

(3.17) 
-1 n~ | (co) -»0 as k -*<». 

The first tvo terms on the right in (3.l6) are 

ryT,e-XTi(l-e-^i)-1[(l-e-^i)(l-e-('i+e)Ti)-:L-e-(^X)Ti] 
1 1 

and using the inequalities 

(l-e^Kl-e-WV1 > (WtO"1 

e-(n-X)T±   < (l+Cu-X)^)"
1 

this expression is greater than 

"k 
I 
1 
I e"XTi Tjd+e/u)-1 -   (l+^-X)^)-1] 

(3.18) ^^u-X)-1   |e"XTi 

in 

II- 

> i^BCu-X)-^"^ , 

where we have used (3.lU) and the fact that Ts- < T. < T. . Therefore, 

dividing (3.l6) by TL     and letting k -*«> while using (3.17) and 

(3.18), we get 

:.i»,,t. •ft  ~^~^--. ^—«,- 
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0 = lim inf nT1 £ T,(Y.-e \ i)/(l-e \ i) 
k-^oo  K  l 1    1 

> 8(n-X)_1 e~XTX > 0 

which is a contradiction.  Hence 

"-' P(^ < lim sup u < n+€) = 0 . 
11-» oo   n 

It is also readily shown that P{lim'sup u = ») = 0 (in fact u < T e * a.s.). 
n-»»   n n  X 

Thus it follows that 

P(X < I'im sup ii ') := 0 '. 
n-* oo-  n 

By a similar argument we show that 

P{lim inf u < X) = 0 
n-»oo  " 

and these two results yield (3.12). 

Now, since T.  is a continuous function of X, it follows from 
A. 

(3.11) and (3.10) that T -+ T. a.s. as n ->». Also, 

-1 ? 2 -XT,,  -XT,.-1 
J (ML,X) = E n  £ T.e  i(l-e  x) 
n 1    1 

and hence it follows from the dominated convergence theorem that 

2 -XT,,  -XTX -1   _i_ . 
J(ML,X) = Txe  

x(l-e  *")  = X ^T^-XT^) ,   ' 

concluding the proof of the theorem. It is also possible to modify 

Wald's proof of the consistency of the maximum likelihood estimator 

[11] to show that X -»X a.s.. 
n 

(ii) A Stochastic Approximation Plan. 

The following plan (denoted."by SA) is "based on the Rohbins-Monro 

stochastic approximation method [8]; it exploits the fact- that J.\ 

i 10 
1    ■ - '  . 

1      ■■  .   • 
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corresponds to the lOO(l-p) ■ 79*7-th percentlle of the exponential dis- 

tribution, independent of X. The plan ie  defined ae follows: 

Choose Tn arbitrary in [rJV,T, 3 and. after defining T......T let 

(3.21) 

and 

Xn="Tn logP' 

An = Xnlp_1 = " Tn(p log p)_1 ' 

-1. Tn+1 -""«C^ mintT^, T^n" A^-p))) , 

n = 1*2,...  . 

For the rationale behind this plan we refer the reader to [8] and [10]. 

Theorem 3«3:  The SA plan is adaptive. 

Proof. It suffices to show that 

(3.22) 

Writing 

T ->T, a.s. as n -»». 
n   X 

W = n-1A (Y -e"XTn) , 
n     n n    ' ' 

it follows from Theorem D, p. 387 of [7] that 

(3.23) £ W.  converges a.s. as n ->» . 

Now, suppose that for some toefi for which (3-23) holds we can find a 

sequence {n, ) such that 

(5-24) 

Then we shall show that 

T (CD) -»T,  as k -><». 

(3.25) 

Let e(> 0) be small enough so that 

T (CD) -> T, as n -»oo. 
n     A* 

u 
ii 

T. ... ..fjn qi ■;■■ ^.1JL ■■ ;.-)t'J.-- ' " > s«r   y,  ■ ■* j» :'■; y ,'.;;, , giy"; ■ -J|K >'*•■  '"VjH ;■ ;i;' "■■!. .' 'ji'-rt'1- "*. M" —ST" 
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(l--e, '!■ +e) C (TT, T ') . 

There exists an integer k  such that 

|T (CD)-TJ < e/2 for all k > k£ , 

m+j 
| £ W | < e/k for all m > XL   , and 
m e 

all J > 0 , 

and 

(r^+i)"^ +£ < e/k    for all k > k_ and 

(3.26) all: I > 0 . 

Let k > k  be fixed and consider the behavior of T   ,  m=0,l,2,... 
it 

Suppose T -T. > 0 (a similar argument will hold otherwise). From 
nk 

(5.21) 

T  ., - T, = T  - T- + n"X (e  ^ „"  X) + W„ 
V1     x     "k     x     *  "k "e °k 

<T  - T. + W  <e. 
"k   X   "k 

If T +1 - T. > 0, then repeating, 
K 

T  . 9 - T, < T  - T. + W  + W .  < € . 
V2  X~ °k  X  "k  V1" 

Repeating this argument we find that if 

then 

T    - T, > 0 for m=0,l, ...,£-1 n.+m   X ' ' 

|T  m - Tx| < e for m=0,l,...,i-l 

Suppose that T  . - T. < 0. Then 

12 
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0 > T ^. - T, — n^+i   X 

= T rL+i-1  'X 

-1 

-XT +i-l -XT, 
vi_l(e  V^.-X) + W^., 

> - e/2 . 

! f 

*  : 

0 

Now we apply the same argument but starting with T  , instead of T . 

It follows that, for all m, 

l\+m " 
TJ < e V 

and (3.25) follows. 

To conclude the proof of the theorem we shall now show that for 

almost all 00, T,  is a limit point of the sequence {T (a>)}. Fix 
A. n 

a) and let [T } he a subsequence converging to T , say, with 
r 

T e[Tr-, T, ]. We shall suppose that T > T.., the other case being 
O   A   A. O    A. 

similar. 

Let e(> 0) be such that T,+e < T -e. There exists r  such 
A.       O € 

that 

- IT - T I < e/2    for r > r , •'no1' € ' r 

' m+j 
I £ W I < e/k        for m > nr , J > 0 
m e 

and 

(3.27). (nr+i)
-1An +i < e/k   for r > r£, J > 0 

r 
-XT,  -X(T.+e) 

Let c = e   -e       . Then, from (3«2l), for r > r 

. T j_, - T, < T  - T, - en" A + W 
nr+l   X - nr   X    

r n
r  ^ 

If T ., - T, > e, then we repeat to obtain 
n_+J.   A, — 
r 

13 
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T j0 - T, < T - T. - c[n_1A +(n +l)_1A ., ] + W + W _,, . n+2   X — n   X    r n   r '  n +1J   n   n +1 r r r        r      r   r 

If again T , 0 - T. > e, we repeat as before} since J  (n +m)" A . = <», n ~Tc.        A. — _  r    n +m r m        r 
it follows that there exists an integer 2 such that T  . - T < e 

n +*   A. —■ r 
while T  .» n - T. > e. Then, from (3-21) 

r 

T '   - T, > - (n +2-1)-1A ... , + W .. . > -6 , n+2   X —  v r   '  n +2-1   n +2-1 —   ' r r       r 
i.e., 

lTn +2 " Txl ^ € r 

Hence, for each e there exist k such that  |T.-T^| < e, i.e., 

{T ) ' has a limitn.'- point at T,, and the theorem follows. n A, 

As far as the criterion J(l,X) is concerned, the ML and SA plans 

are equivalent; however, the plan leading to a sequence (T ) which 

converges fastest to T,  seems preferable in that this plan would 

generally lead to the largest average information J (i,X) for finite n. 

One possible way to judge the rate of convergence of {T } is to con- 

sider the variance of the asymptotic distribution of /n (T -T, ). The 
II  A. 

asymptotic distributions of /n (T -T.) for both plans considered 

[ML and SA] are given in the next theorem. 

Theorem 3.^: For both the ML plan and the SA plan, we have 

(3-28) /S(Tn.Tx)iN(0,(l-p)p"V
2) 

(3-29) /Z  (xn-x) ^> N(0, (l-p)p_\2) , 

2 
where N(u,a ) denotes the normal probability law with mean \t   and 

variance a .   

11+ 
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Proof. First consider the ML plan. Substituting \x      for X in (3«9) 

we' have 

(3.50) 

where 

n    -XT. -u T.     -u T. 
lT.(e  ^e ni)/(l-e nl) + i    = 0 
1    x 

n      -XT.     -ii T. 

en = I VVe-     )/(1"e      > • 

By a central limit theorem for non-independent random variables such as 

Theorem C, p. 377 of [7], or Lemma 6, p. 377 of [9] or Lemma k,  p. 238 

of [10], we have 

■V2, l XT,   -XT-, 
(3.31) n_:i/26n^H(0,Tx

2e X(l-e~    V1) ^(0,p(l-p)"^) . 

Since l-e~ = x[l+g(x)] where g(x) ->0 as x -»0, (3«30) can be 

written 

, n 0  -XT    -a T -1 ilo 
(3.32) /n^-Xjn"1£ Tje  i(l-e Kn i)  [l+gU^-X)^) ] = -ny\  • 

Since 

-1 r 2 "XT- -  "^ T-"1- n  ETie  i(1-e n *)  [l+g((jin-^)T±)] 

-XT    -XT* -1 ,-1 
T^e Hl-e        )  s Txp(l-p)"  a.s. as n -*» , 

(3.30) and (3.29) yield 

^(u-XjiwtO^l-rip-V) . n 

Writing /n(Xn-X) = y/nCi^-X) + e^, it follows from (3.10) and (3.12) 

that e. -»0 a.s. (in fact e  = 0 for n large enough). Hence 

^(X -X) and /n(u -X) have the same asymptotic distributions. 

15 
n- 
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Since 

and 

we obtain also 

dT ax\      .-2 , 
dX~ = X  lo" 

n   X - n-1 

/n(Tn-Tx) *N(0,(l-p)p
-:iT^V\log p)2) 

which is equivalent to (3.28). 

Now consider the SA plan.  Since Tn -»Tx and T^- < T^ < T^ there 

exists a random variable N with P(N < °°) = 1 such that, for all n > N, 

*X < Tn + n"\(Vp) K TX 

and hence, by (3-21), for n > N , 

Tn+1 = 
Tn + n\M. 

(3.32) = Tn + n
_1An(e  

n-e  X) + WQ 

= Tn-n-1(l+e2n)(VTx)+Wn 

where e_ -»0 a.s. as n -*•». 2n 

Multiplying (3.32) by (n+l)7, rearranging terms and writing 

temporarily 

we have 

(3.33) Xn+1 = Xn-n-
1(l-7+e5n)Xn + (n+l)\ 

where e, -*0 a.s.. 
3n 

4 \6: 



ü 
Li 

If 7 < 1/2, then the argument we used to show that T -T, -»0 
n K 

with T  defined by (3-21) can he applied to the sequence [X } as 

given by (3-35) to show that X -»0 a.s. as n->oo; hence 

(3.3*0     T -T. = o(n~7) a.s., with 7 < l/2, as n -»» . 
Xi.     A. 

Again, from (3.32) 

(3.35)      ; n(Tn+1-Tx) = (n.l)(VTx) + e^ + nWQ 

where 

"%i " -€2»<V\> =0((VTX)
2), 

as n ->°o. By (3.3*0 

(3-36) 

Iterating (3.35) hack to n = N+l and dividing by /n , we get 

(3.37)   ^(Tn+1-Tx) = n-^
2N(TN-TJ + n"

1/2 j^ + n^2 j k W^ 

Now 

|e, I = 0(n" 7)  a.s. as n -»». 

N+l N+l 

and, by (3.36) 

-1/2 n ' N(T -T ) ->0 a.s. as n -»», 

-1/2 r n    2.eiiv
_>0 a • s • as n -j» . 

N+l 

Also, 

and here 

n"l/2 f k W. = n_l/2 f k W '- n_l/2 f k Wv 
N+l  k       1   k       1   k 

I/P 
N 

n" ' I k W. -»0 t: k a.s. as n -»00. 

While by the central limit theorem from which (3-31) follows, we have 
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n-l/2[kH.^N(0,(l.p)p-V2) 
1   V- 

These results together with (3-37) yield (3-28) and conclude the proof 

of the theorem. 

Since the two plans have the same asymptotic distribution we are 

unahle to decide between them on this basis. From a practical point of. 

view the SA plan seems preferable.  It is not only computationally 

simpler but on each step only the values of T  and Y  are required 

in order to calculate T .,  whereas the entire past set of observations 

is required in the case of the ML plan. 

An important question at this" point is whether one could construct 

an adaptive plan with a smaller asymptotic variance for /n(T -3\) 
Q  A. 

than that of the plans discussed. We state the following theorem ([6]) 

without proof. 

Theorem 3.5: For any plan I such that there exists a sequence of posi- 

tive numbers fa (x)) such that a  (X.) -»0 as n -*oo and 
    n     ;—  n       —         

an(X)"
1(Tn-Tx) 4 N(0,1) 

(which implies that I is adaptive), we have 

lim inf no (X)2 > (l-p)p_1X"2 

n-»oo 

for all Xe(X, X), except possibly for X in a set of 0 Lebesgue 

measure. 

This theorem states that it is essentially not possible to improve 

on the ML and SA plans if the. criterion used is the asymptotic variance 

of /n" (Tn-Tx). '..-". 

18 



k.      Minimization of cost. 

We shall now suppose that maintenance of the system involves the 

following costs: Each inspection costs c., units; repair of the system 

if it is inoperative costs c? units} and while the system is inopera- 

tive a cost of c, units per unit time is incurred. In this section we 

shall study the problem of choosing the inspection plan so as to minimize 

the long run expected cost per unit time. 

More precisely, consider a plan I giving rise to inter-inspection 

times (T.) with associated inspection times t. =  J ^«' Over the 

interval [0,T] the cost associated with plan I is 

N- N_ 

(*.l) -A + c2 i (i-Yi) + s( £ vv > 1 T   * 1=1   i    p i=i 

where N  is defined hy 

(^•2) tN < * < t    , 
T T 

and where V  denotes the time the system has heen inoperative over the 

interval [t. -.>*., 3 &n(i W  tne time it has heen inoperative during 

[tM ,T]. Hence,the expected cost per unit time over the interval [0,T] 

associated with plan I is 
N 

-1T -1 
(IK3)    C(I,X,T) = T"XE £ [c1+c2(l-Yi)+c5Vi] + T c^ . 

We also write 

(1K*0 C(I,X) = lim sup C(I,\,T) . 
n-> oo 

Within the class >J~ no inspection plan exists having the property that 

C(I,X,T) is minimized for each T uniformly in X. We shall,therefore, 

use C(I,X) as a criterion for evaluating inspection plans. This 
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criterion is closely related to one suggested by Elehinger [U].- 

Theorem k.l':      For each X. and for each I , 

*-l -XT*» ' 
(^.5) C(I,X) > c3 + Tx tc-L+d^ (1-e  x)] 

where 

(^.6) dx - c2 - CjX'
1 

and T* is the unique solution of the equation 

(k.l) e_XT(l+XT) = 1 + c^"1 } 

if X < c /(c +c2) then 0 < T* < » , 

if X > c,/(c +c2) then we take T£ = » 

and in this case the second term in (U.5) should be interpreted as 0. 

Proof. Consider a fixed T and define variables  X.^ by 

(1^.8) x, = 

r ' i 

i if Ti < 

-1 
0 otherwise . 

Then ■(^•5) can be written 

i °° 1 
(k.9) C(I,X,T) = T'-

LE][x.[c;L+c2(l-Yi)+c5Vi] + T c5EWT 

= T"
1
   I E Xi[c1+c2(l-Yi)+c5Vi] + T_1c5EWT   . 

Mow 

EtX^l-Y^)] = E{E[Xi(l-Yi)|Y1y...,Y1_]/T1,..;/ri]} 

1 = E{XiE[(l-Y1)|Y1,...,Yi_1,T1,...,Ti]} 

and similarly, ' . 

20 
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XT, 

«H 

I. ; 
*> 

0   *' 

■J 

E w'a E VVx~1(1_e   i)3 

oo _X(T -| XT ) 
EWT=E(T-[ X±T±-X x(l-e I    X l  )}   . 

Substituting into (I1-.9), we find 

00 -XT 

(U.10) C(I,\,T)  = cj-«      I E Xj.[c1+dx(l-e      i)] 

-X(T - I XT) 
- c^-V-TSd-e 1    i 1") , 

-XT, 
If    X > c,/(c +c2),  then    c^+cL   > 0,    which implies that c.+cL (l-e        ) > 0. 

Hence,  dropping the second term on the right in (^.lO), we   obtain 

C(I,X,T) > o,-e-X" T" 

and (^.5) follows by letting T -*». In the remaining case X < c,/(c.+Cp) 

1 XT 
which implies c.+d. < 0. The function T~ [c +d. (l-e"  )] is minimized 

by taking T = T*, and, using (k.l),  this minimum value becomes 

-XT* 
T*"1[c1+dx(l-e      X)] = (c1+dx)x(l+XT*)'1 < 0 . 

-XT? 

N 

(^•11) 

From (J+.IO) 

C(I,X,T) > c5+T*"1[c1+dx(l-e    'X)JT_1 £ ET^-CjX"1* 

and using the inequality 

00 ™ 

T"
1
 T EXT,   = ET"

1
 T XT,  = ET"

1
   f T,  < 1 

t-     i i iii v   i — 

together with (U.ll) we have 

(lf.12) C(I,X,T) > c3+T*"x[c1+dx(l-e      ^l-c^T 

from which (^.5) follows by letting T -»». 
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Equality in (k.j)  is achieved if T = T* a.s. for all i, so 
1      A, 

that, if X were known this would constitute an optimal inspection plan, 

A few properties of T* as a function of X are worth noting. 

If    is continuous for 0 < X < c,/.(c.,+c2) and T?•■-»+ » as X ->0 

or c:2./(c1+cp). Also T* is hounded below by a positive constant; in 
'3M 1 2 

fact, since 

it follows from (^.7) that 

-XT* 
e  * > 1-XT* 

1-X2T*2 < 1 + c^"
1 

i.e.. 

(^.13) 
. ,  .-2,-1^1/2 ^   -1 
> (-ClX c^ )■"'  > C]c5 

j 
I 

< 
ft 

for X < c / (c-H-Cg). Since, for X > ^/(c-j+Cg), T* = » (^. 13) holds 

for all X. The general form of T* is indicated in the following 

figure 

cjAc-^cg) r 

Intuitively speaking, when X is small, the system fails infre^ 

quently so that one would expect that the best inspection plan would 

require infrequent inspections; that is in accordance with the behavior 

of T* as X ->0. Also, if X becomes large, the system would be 

failing at a high rate. If this rate is high enough, one would expect 
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that it would "be more economical to abandon the system and sustain the 

cost c, per unit time rather than to try to maintain the system.. 

Again, this is in accordance with the "behavior of T* as X. increases 

and, in fact, the critical value is X = c,/(c1+c2). 

Now we turn to the case where X is unknown. 

Definition: An inspection plan I is said to he adaptive (relative to 

j"' C(I,X)) if 
i. 

!! -XT» 
(k.lk) C(I,X) = c3 +'0j"

1[c14dx(l-e  
X)] . 

£'     •       Next we exhihit and discuss two adaptive plans.:■. 
r 

(i) A Maximum Likelihood Flan.. 
jj 

i; Let {s ) be an increasing sequence of positive numbers such that 

ii 
Tt 

s -*oa    as n -*<» n 

and 

n -Xs 
I  |  • (^.15) lim inf n"a ^ e  i > 0 
;  • n-*oo    1 

• • for all Xe(X,X) and some QE(I/2,1). AS an example of a sequence 
i i 

satisfying these conditions, we mention 

s = s + ß log n 

where s > 0 and ß(> 0) is such that Xß + a < 1. 

Now we define the following plan. Take ^ = s^ after n steps 

compute the maximum likelihood estimate X  of X and then take 

(IK16) Tn+1 = minUn+1,T* J . 
n 

We shall denote this plan again "by ML but it should be noted that it 

differs somewhat in spirit from the ML plan of section 5. The differences 

25 



 ft 

4- 

are due to the fact that we have no a priori upper hound on T*.  In 

fact, if we had defined T ^, = T*  then X >  c,/(c.+c0) for some 
' n+1   X        n —    y      i.    d n 

n (which has positive probability of occurring even if X < cV(c..+c2)) 

would imply T , = °°, resulting in no further inspections and, in 

general, non-adaptivity of the inspection plan. Hence it is necessary 

to control the rate at which {T } can increase and this is the purpose 

of the sequence {s ). 

Theorem ^.2:  The ML plan is adaptive. 

Proof. First we prove again that {X ) is a strongly consistent sequence 

of estimates-of X, i.e., 

X -* X a.s. as n-*». 
n 

This result is proved by the following slight modifications of the argu- 

ment given in the proof of Theorem 3-2. By exactly the same reasoning 

as that leading to (3.17) we obtain 

(h.n) n^a | (to) ->0 as k -*» . 

The lower bound on the first two terms on the right of (3>l6) given 

by (3-l8) is replaced by 

n £.    -XSJ 
(U.l8) a(n-X)  le  V, 

1 

in which we have used the fact that c,c" < T±. < s±    which follows 

from (J+.13) and (U.l6). 

Hence, dividing (3.l6) by ru  and letting k -» « while using 

(^.17) and (^.18) together with (1^.15) we again obtain a contradiction. 

It follows that X ->X a.s. as in Theorem 3-2.  This implies that 
n 



a 

0 

j ii! 

T -*T* a.s.. as n ->< 
n   X 

and this in turn implies that 

T-lH  ---1 - -*T*      a.s. 

N 
-1 A ,  -XT     * T    -M* 

and T  Y (l-e  i) -»17 (l-e   ) a.s. as T -»». 
1 * 

I 
1 

Since x > T T. > N c,c~  we have 
- r t " T 1 J 

and 

T_1N < c^cl1 
T — J  1 

N 
T   I (i-e   ) < T N < c c. 

1 ;> x 

Hence "by the dominated convergence theorem 

„*-l 

and 

ET
-1
N -*T* 
T    X 

N 
i  T    -XT,      T   -XT* 

ET"
1
 I  (l-e  i) -*T*_1(l-e  X) 

as T -»«>. By (^.lO), 

N 
i i I    -XT* 

C(ML,X,T) = . C, + C.ET N + d.ET_i Y (l-e   ) 
0 X. T     A.       IT 

\ 
1       -X(T - IT ) 

- c X^T-^d-e     1 . i ) 

and letting T -*<» it follows from the results above that (^.l^-) 

holds. ■       '.'■:'  •'"■■•;:.•■ '■' ' ■-'  :'" ''".:■••.• . 

(ii) A Stochastic Approximation Plan. 

Unfortunately T* cannot he characterized independently of the 
A, 

unknown X as was possible for T.. Consequently, construction of 
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suitable inspection plans using stochastic approximation methods becomes 

more difficult. We shall discuss such a plan using a sequence of estimates 

of X "based on a stochastic approximation method closely related to that 

used to estimate T, in section 5. The relation between these methods will 

he indicated below. 

Let {s ) again be an increasing sequence of numbers such that, 

for all Xe(X,X) 

(1^.19) [      I n"2e2Xsn < » 

and S. 

I  s -*oo as n -»oo . 
*-  n 

An example of a sequence satisfying these conditions is again 

s = s + ß log n n 

where s > 0 and ß is such that 0 < 2ß X < 1. 

Now, let Tn = sn  and let X  be arbitrary in the interval 

(X,X). Having defined T.,...,T, X , ...,X  we let 

X   = max(X,min{X,X -n~"T3(Y -e n )}) 

and 

n+1 

where 

Bn = T; e n n n   n 

We shall denote this plan by SA. In order to see the relation be- 

tween this plan and the SA plan of section 5 defined by (5.2l), let us 

ignore, for the moment, the truncation of [T ) to the interval [TpTjJ. 
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Then (3-2l) gives approximately 

-XT\ 
T _,, = T. + n_1A (Y -e  X) n+1   n     nA n    '■ 

Taking inverses, we get, approximately 

ij -J 1 

n+1 n :    n n v n    ' 

„-1 Since X = -T  log p, we then have approximately 

(^.21) 
-XT 

X ^ ' = X + n-1A T"2(log p)(Y -e  X) . n+1   n     n n x °. x n    ' 

-1 -1   -1 XTn Since log p = -XT.  and AQ = p XR = X_ e  , 

(1+.22) 
XT. 

A rtog p = -(XX-1)(T.T-1)T-1e X . n n n 'X n ' n 

U 

Comparing (U.21.) and (U.22) we see that the two iterative relations 

defining {X ) differ only in that X and T.  in (1+.21) have been 
n "• 

replaced by the estimates X  and T . 

Theorem k.J:     The plan SA is adaptive. 

Proof. It suffices again to show that X -> X a.s. as n -»<*>. 

First we let 

n      -XT 
W = nh  (Y -e  n). n     n n 

Then 

and 

E(Wn|Wi,...,Wn_1) =0 

-XT    -XT 
Var(Wn) = n-

2E(B^e  n(l-e  n)} 

0   0 2X T -XT 
<n-2E{T"2e n ne  n} 
— n 

< -2 2-22Xsn < n c-c. e 
— 0 1 
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v 
-I 

I 

6 
i 

By (^.19) 

£ Var(W ) < » , 

and it follows again from Theorem D,  p.  5Ö7 of  [7] that   £ w      converges 

a.s.. Further, 

-IT,    ^   -1      -1     n   n n    B    < n    c,c,   e      -* 0    as    n -»« 
n — 3 1 

and,  for   X -X > €, 
' n     — 

.. -XT      -X T 
T n_1B (e      n-e    n n) 

■ -X T      (X -X)T v-    -L,        nn/xn        n.\ =\ n ^ne (e -1) 

..-XT - 
> £ n_1B e    n n € T 
— *- n n 

> € I n1 

=   00     . 

With these three facts in hand an analog of.the proof of theorem 

3 • 3 can he given to show that X -»X a.s. as n-*oo. We shall not 

give the details again. 

One possible way to compare adaptive plans is, as in section 3> "to 

compare the asymptotic distributions of T  and choose that with the 

smallest asymptotic variance. 

Theorem k.h:    For both the ML and the SA plans we have 

(i) if U c /(c-j+Cg) then 

£ XT*     , dT* o 
/n(Tn-T*)^N(0,(e 

X-D(f V') 

and 
XT* 

/n-(Xn-X) lN(0,(e 
X-1)T*-2) ; 
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■ (ii) if X > c3/(c,+c2) then, with probability 1, for all n 

sufficiently large, 

*"" " T = s . ' • : n   n 

'.. Proof, (i) For the first part the proof is quite analogous to that of 

'  : Theorem 3.h and we oirit.the details. 

.> ' ' (ii) Since X   ->X> cj(c^+c^)    a.s., we have, for all n 

| sufficiently large, 

T* =« i.e., Tn = min(s ,T*  ) = SQ . 
n n 

This theorem indicates that ohese two plans are again asympototically 

,. equivalent and the SA plan seems to be preferable only in that it involves 

rj somewhat simpler computations. It is still true that the SA plan requires 

i' the calculation of Tf, thus requiring the solution of equation (^.7). at 

each step. It is possible to introduce a plan that will also simplify 

this calculation by using an approximation method. 
j 

At present it is not known whether the two plans considered have an 

optimum property of the type possessed by the equivalent plans in the 
! i . 

.j previous section as indicated by Theorem 3«5« 

5-  Extensions. 

We are now considering the extension of these results along the 

following lines: 

(i) Replacement of the exponential distribution by a more general 

failure distribution. 

(ii) Other types of cost functions. 

(iii) Constraints on the inspection times. 

This list obviously does not exhaust all possibilities. 
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